Generalized parallel tempering on Bayesian inverse problems
نویسندگان
چکیده
Abstract In the current work we present two generalizations of Parallel Tempering algorithm in context discrete-time Markov chain Monte Carlo methods for Bayesian inverse problems. These use state-dependent swapping rates, inspired by so-called continuous time Infinite Swapping presented Plattner et al. (J Chem Phys 135(13):134111, 2011). We analyze reversibility and ergodicity properties our generalized PT algorithms. Numerical results on sampling from different target distributions, show that proposed significantly improve efficiency over more traditional algorithms such as Random Walk Metropolis, preconditioned Crank–Nicolson, (standard) Tempering.
منابع مشابه
A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملBayesian analysis in inverse problems
In this paper, we consider some statistical aspects of inverse problems. using Bayesian analysis, particularly estimation and hypothesis-testing questions for parameterdependent differential equations. We relate Bayesian maximum likelihood Io Tikhonw regularization. and we apply the expectatian-minimization (F-M) algorithm to the problem of setting regularization levels. Further, we compare Bay...
متن کاملInverse problems: A Bayesian perspective
ion is not needed. Inverse problems 531 Theorem 6.13. Two Gaussian measures μi = N (mi, Ci), i = 1, 2, on a Hilbert space H are either singular or equivalent. They are equivalent if and only if the following three conditions hold: (i) Im(C 1 ) = Im(C 1/2 2 ) := E, (ii) m1 −m2 ∈ E, (iii) the operator T := ( C−1/2 1 C 1/2 2 )( C−1/2 1 C 1/2 2 )∗ − I is Hilbert–Schmidt in E. In particular, choosin...
متن کاملSolving Generalized Small Inverse Problems
We introduce a “generalized small inverse problem (GSIP)” and present an algorithm for solving this problem. GSIP is formulated as finding small solutions of f(x0, x1, . . . , xn) = x0h(x1, . . . , xn) + C = 0(mod M) for an n-variate polynomial h, non-zero integers C and M . Our algorithm is based on lattice-based Coppersmith technique. We provide a strategy for construction of a lattice basis ...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics and Computing
سال: 2021
ISSN: ['0960-3174', '1573-1375']
DOI: https://doi.org/10.1007/s11222-021-10042-6